Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Cheminform ; 15(1): 93, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798636
2.
Environ Int ; 178: 108097, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37478680

RESUMEN

Exposure science is evolving from its traditional "after the fact" and "one chemical at a time" approach to forecasting chemical exposures rapidly enough to keep pace with the constantly expanding landscape of chemicals and exposures. In this article, we provide an overview of the approaches, accomplishments, and plans for advancing computational exposure science within the U.S. Environmental Protection Agency's Office of Research and Development (EPA/ORD). First, to characterize the universe of chemicals in commerce and the environment, a carefully curated, web-accessible chemical resource has been created. This DSSTox database unambiguously identifies >1.2 million unique substances reflecting potential environmental and human exposures and includes computationally accessible links to each compound's corresponding data resources. Next, EPA is developing, applying, and evaluating predictive exposure models. These models increasingly rely on data, computational tools like quantitative structure activity relationship (QSAR) models, and machine learning/artificial intelligence to provide timely and efficient prediction of chemical exposure (and associated uncertainty) for thousands of chemicals at a time. Integral to this modeling effort, EPA is developing data resources across the exposure continuum that includes application of high-resolution mass spectrometry (HRMS) non-targeted analysis (NTA) methods providing measurement capability at scale with the number of chemicals in commerce. These research efforts are integrated and well-tailored to support population exposure assessment to prioritize chemicals for exposure as a critical input to risk management. In addition, the exposure forecasts will allow a wide variety of stakeholders to explore sustainable initiatives like green chemistry to achieve economic, social, and environmental prosperity and protection of future generations.


Asunto(s)
Contaminantes Ambientales , Estados Unidos , Humanos , Contaminantes Ambientales/análisis , United States Environmental Protection Agency , Inteligencia Artificial , Gestión de Riesgos , Incertidumbre , Exposición a Riesgos Ambientales/análisis , Medición de Riesgo
3.
Chem Res Toxicol ; 36(3): 508-534, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36862450

RESUMEN

The term PFAS encompasses diverse per- and polyfluorinated alkyl (and increasingly aromatic) chemicals spanning industrial processes, commercial uses, environmental occurrence, and potential concerns. With increased chemical curation, currently exceeding 14,000 structures in the PFASSTRUCTV5 inventory on EPA's CompTox Chemicals Dashboard, has come increased motivation to profile, categorize, and analyze the PFAS structure space using modern cheminformatics approaches. Making use of the publicly available ToxPrint chemotypes and ChemoTyper application, we have developed a new PFAS-specific fingerprint set consisting of 129 TxP_PFAS chemotypes coded in CSRML, a chemical-based XML-query language. These are split into two groups, the first containing 56 mostly bond-type ToxPrints modified to incorporate attachment to either a CF group or F atom to enforce proximity to the fluorinated portion of the chemical. This focus resulted in a dramatic reduction in TxP_PFAS chemotype counts relative to the corresponding ToxPrint counts (averaging 54%). The remaining TxP_PFAS chemotypes consist of various lengths and types of fluorinated chains, rings, and bonding patterns covering indications of branching, alternate halogenation, and fluorotelomers. Both groups of chemotypes are well represented across the PFASSTRUCT inventory. Using the ChemoTyper application, we show how the TxP_PFAS chemotypes can be visualized, filtered, and used to profile the PFASSTRUCT inventory, as well as to construct chemically intuitive, structure-based PFAS categories. Lastly, we used a selection of expert-based PFAS categories from the OECD Global PFAS list to evaluate a small set of analogous structure-based TxP_PFAS categories. TxP_PFAS chemotypes were able to recapitulate the expert-based PFAS category concepts based on clearly defined structure rules that can be computationally implemented and reproducibly applied to process large PFAS inventories without need to consult an expert. The TxP_PFAS chemotypes have the potential to support computational modeling, harmonize PFAS structure-based categories, facilitate communication, and allow for more efficient and chemically informed exploration of PFAS chemicals moving forward.


Asunto(s)
Quimioinformática , Fluorocarburos , Simulación por Computador , Fluorocarburos/química
4.
Comput Toxicol ; 252023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36733411

RESUMEN

The Analog Identification Methodology (AIM) was developed over 20 years ago to identify analogues to support read-across at the US Environmental Protection Agency. However, the current public version of the standalone tool, released in 2012, is no longer usable on Windows operating systems supported by Microsoft. Additionally, the structural logic for analogue selection is based on older, customised Simplified molecular-input-line-entry system (SMILES)-type features that are incompatible with modern cheminformatics tools. Given these limitations, a case study was undertaken to explore a more transparent, extensible method of implementing the AIM fragments using Chemical Subgraphs and Reactions Mark-up Language (CSRML). A CSRML file was developed to codify the original AIM fragments, and the extent to which AIM fragments were faithfully replicated was assessed using the AIM Database. The overall mean performance of the CSRML-AIM across all fragments in terms of sensitivity, specificity, and Jaccard similarity was 89.5%, 99.9%, and 82.2%, respectively. Comparing the AIM fragments with public ToxPrints using a large set of ~25,000 substances of regulatory interest to EPA found them to be dissimilar, with an average maximum Jaccard score of 0.24 for AIM and 0.29 for ToxPrint fingerprints. Both fragment sets were then used as inputs in the automated read-across approach, Generalised Read-Across (GenRA), to evaluate the quality of fit in predicting rat acute oral toxicity LD50 values with the coefficient of determination (R2) and root mean squared error (RMSE). The performance of AIM fragments was R2=0.434 and RMSE=0.663 whereas that of ToxPrints was R2=0.477 and RMSE=0.638. A bootstrap resampling using 100 iterations found the mean and the 95th confidence interval of R2 to be 0.349 [0.319, 0.379] for AIM fragments and 0.377 [0.338, 0.412] for ToxPrints. Although AIM and ToxPrints performed similarly in predicting LD50, they differed in their performance at a local level, revealing that their features can offer complementary insights.

5.
Chem Res Toxicol ; 36(3): 402-419, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36821828

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a diverse set of commercial chemicals widely detected in humans and the environment. However, only a limited number of PFAS are associated with epidemiological or experimental data for hazard identification. To provide developmental neurotoxicity (DNT) hazard information, the work herein employed DNT new approach methods (NAMs) to generate in vitro screening data for a set of 160 PFAS. The DNT NAMs battery was comprised of the microelectrode array neuronal network formation assay (NFA) and high-content imaging (HCI) assays to evaluate proliferation, apoptosis, and neurite outgrowth. The majority of PFAS (118/160) were inactive or equivocal in the DNT NAMs, leaving 42 active PFAS that decreased measures of neural network connectivity and neurite length. Analytical quality control indicated 43/118 inactive PFAS samples and 10/42 active PFAS samples were degraded; as such, careful interpretation is required as some negatives may have been due to loss of the parent PFAS, and some actives may have resulted from a mixture of parent and/or degradants of PFAS. PFAS containing a perfluorinated carbon (C) chain length ≥8, a high C:fluorine ratio, or a carboxylic acid moiety were more likely to be bioactive in the DNT NAMs. Of the PFAS positives in DNT NAMs, 85% were also active in other EPA ToxCast assays, whereas 79% of PFAS inactives in the DNT NAMs were active in other assays. These data demonstrate that a subset of PFAS perturb neurodevelopmental processes in vitro and suggest focusing future studies of DNT on PFAS with certain structural feature descriptors.


Asunto(s)
Fluorocarburos , Síndromes de Neurotoxicidad , Humanos , Síndromes de Neurotoxicidad/metabolismo , Neuronas/metabolismo , Proyección Neuronal , Apoptosis , Fluorocarburos/toxicidad
6.
J Chem Inf Model ; 62(20): 4888-4905, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36215146

RESUMEN

The online encyclopedia Wikipedia aggregates a large amount of data on chemistry, encompassing well over 20,000 individual Wikipedia pages and serves the general public as well as the chemistry community. Many other chemical databases and services utilize these data, and previous projects have focused on methods to index, search, and extract it for review and use. We present a comprehensive effort that combines bulk automated data extraction over tens of thousands of pages, semiautomated data extraction over hundreds of pages, and fine-grained manual extraction of individual lists and compounds of interest. We then correlate these data with the existing contents of the U.S. Environmental Protection Agency's (EPA) Distributed Structure-Searchable Toxicity (DSSTox) database. This was performed with a number of intentions including ensuring as complete a mapping as possible between the Dashboard and Wikipedia so that relevant snippets of the article are loaded for the user to review. Conflicts between Dashboard content and Wikipedia in terms of, for example, identifiers such as chemical registry numbers, names, and InChIs and structure-based collisions such as SMILES were identified and used as the basis of curation of both DSSTox and Wikipedia. This work also allowed us to evaluate available data for sets of chemicals of interest to the Agency, such as synthetic cannabinoids, and expand the content in DSSTox as appropriate. This work also led to improved bidirectional linkage of the detailed chemistry and usage information from Wikipedia with expert-curated structure and identifier data from DSSTox for a new list of nearly 20,000 chemicals. All of this work ultimately enhances the data mappings that allow for the display of the introduction of the Wikipedia article in the community-accessible web-based EPA Comptox Chemicals Dashboard, enhancing the user experience for the thousands of users per day accessing the resource.


Asunto(s)
Cannabinoides , Internet
7.
Front Environ Sci ; 10: 1-13, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35936994

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of man-made chemicals of global concern for many health and regulatory agencies due to their widespread use and persistence in the environment (in soil, air, and water), bioaccumulation, and toxicity. This concern has catalyzed a need to aggregate data to support research efforts that can, in turn, inform regulatory and statutory actions. An ongoing challenge regarding PFAS has been the shifting definition of what qualifies a substance to be a member of the PFAS class. There is no single definition for a PFAS, but various attempts have been made to utilize substructural definitions that either encompass broad working scopes or satisfy narrower regulatory guidelines. Depending on the size and specificity of PFAS substructural filters applied to the U.S. Environmental Protection Agency (EPA) DSSTox database, currently exceeding 900,000 unique substances, PFAS substructure-defined space can span hundreds to tens of thousands of compounds. This manuscript reports on the curation of PFAS chemicals and assembly of lists that have been made publicly available to the community via the EPA's CompTox Chemicals Dashboard. Creation of these PFAS lists required the harvesting of data from EPA and online databases, peer-reviewed publications, and regulatory documents. These data have been extracted and manually curated, annotated with structures, and made available to the community in the form of lists defined by structure filters, as well as lists comprising non-structurable PFAS, such as polymers and complex mixtures. These lists, along with their associated linkages to predicted and measured data, are fueling PFAS research efforts within the EPA and are serving as a valuable resource to the international scientific community.

8.
Front Environ Sci ; 10: 1-865488, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35494535

RESUMEN

Perfluorooctanoic acid (PFOA) and related compounds are per- and polyfluorinated alkyl substances (PFASs) of concern from toxicological, environmental, and regulatory perspectives. In 2019, the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants listed PFOA, its salts, and PFOA-related compounds in Annex A to the Convention. Additionally, the listing specifically included PFOA branched isomers and compounds containing a perfluoroheptyl (C7F15)C moiety, with some noted exclusions. A draft updated "Indicative List" of 393 PFASs (335 with defined structures), each specified as falling within or outside the listing, was released for comment in 2021. The U.S. Environmental Protection Agency's CompTox Chemicals Dashboard has published a curated PFAS list containing more than 10,700 structures. Applying the PFOA and related compounds listing definition to screen this list required a structure-based approach capable of discerning salts and branched or linear forms of the (C7F15)C moiety. A PFOA SMILES workflow and associated Excel macro file, developed to address this need, applies a series of text substitution rules to a set of canonicalized SMILES structure representations to convert branched forms of the (C7F15)C moiety to linear forms to aid their detection. The approach correctly classified each Stockholm Convention draft Indicative List structure relative to the PFOA and related compounds definition, and accurately discerned branched and linear forms of the (C7F15)C moiety in over 10,700 PFAS structures with 100% sensitivity (no false negatives) and 99.7% accuracy (35 false positives). Approximately 20% of structures in the large PFAS list fell within the PFOA and related compounds definition, and 10% of those were branched. The present work highlights the need to computationally detect branched forms of PFASs and promotes the use of unambiguous, structure-based definitions, along with tools that are publicly available and easy to use, to support clear communication and regulatory action within the PFAS community.

9.
Comput Toxicol ; 242022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36969381

RESUMEN

Per- and Polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are in widespread use and present concerns for persistence, bioaccumulation and toxicity. Whilst a handful of PFAS have been characterised for their hazard profiles, the vast majority of PFAS have not been studied. The US Environmental Protection Agency (EPA) undertook a research project to screen ~150 PFAS through an array of different in vitro high throughput toxicity and toxicokinetic tests in order to inform chemical category and read-across approaches. A previous publication described the rationale behind the selection of an initial set of 75 PFAS, whereas herein, we describe how various category approaches were applied and extended to inform the selection of a second set of 75 PFAS from our library of approximately 430 commercially procured PFAS. In particular, we focus on the challenges in grouping PFAS for prospective analysis and how we have sought to develop and apply objective structure-based categories to profile the testing library and other PFAS inventories. We additionally illustrate how these categories can be enriched with other information to facilitate read-across inferences once experimental data become available. The availability of flexible, objective, reproducible and chemically intuitive categories to explore PFAS constitutes an important step forward in prioritising PFAS for further testing and assessment.

11.
Toxicology ; 457: 152789, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33887376

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a broad class of hundreds of fluorinated chemicals with environmental health concerns due to their widespread presence and persistence in the environment. Several of these chemicals have been comprehensively studied for experimental toxicity, environmental fate and exposure, and human epidemiology; however, most chemicals have limited or no data available. To inform methods for prioritizing these data-poor chemicals for detailed toxicity studies, we evaluated 142 PFAS using an in vitro screening platform consisting of two multiplexed transactivation assays encompassing 81 diverse transcription factor activities and tested in concentration-response format ranging from 137 nM to 300 µM. Results showed activity for various nuclear receptors, including three known PFAS targets--specifically estrogen receptor alpha and peroxisome proliferator receptors alpha and gamma. We also report activity against the retinoid X receptor beta, the key heterodimeric partner of type II, non-steroidal nuclear receptors. Additional activities were found against the pregnane X receptor, nuclear receptor related-1 protein, and nuclear factor erythroid 2-related factor 2, a sensor of oxidative stress. Using orthogonal assay approaches, we confirmed activity of representative PFAS against several of these targets. Finally, we identified key PFAS structural features associated with nuclear receptor activity that can inform future predictive models for use in prioritizing chemicals for risk assessment and in the design of new structures devoid of biological activity.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Fluorocarburos/química , Fluorocarburos/toxicidad , Transducción de Señal/efectos de los fármacos , Proliferación Celular/fisiología , Fluorocarburos/metabolismo , Células Hep G2 , Humanos , Estructura Molecular , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/fisiología
12.
Arch Toxicol ; 95(5): 1723-1737, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33656581

RESUMEN

The sodium-iodide symporter (NIS) mediates the uptake of iodide into the thyroid. Inhibition of NIS function by xenobiotics has been demonstrated to suppress circulating thyroid hormones and perturb related physiological functions. Until recently, few environmental chemicals had been screened for NIS inhibition activity. We previously screened over 1000 chemicals from the ToxCast Phase II (ph1v2 and ph2) libraries using an in vitro radioactive iodide uptake (RAIU) with the hNIS-HEK293T cell line to identify NIS inhibitors. Here, we broaden the chemical space by expanding screening to include the ToxCast e1k library (804 unique chemicals) with initial screening for RAIU at 1 × 10-4 M. Then 209 chemicals demonstrating > 20% RAIU inhibition were further tested in multiple-concentration, parallel RAIU and cell viability assays. This identified 55 chemicals as active, noncytotoxic RAIU inhibitors. Further cytotoxicity-adjusted potency scoring (with NaClO4 having a reference score of 200) revealed five chemicals with moderate to strong RAIU inhibition (scored > 100). These data were combined with our previous PhII screening data to produce binary hit-calls for ~ 1800 unique chemicals (PhII + e1k) with and without cytotoxicity filtering. Results were analyzed with a ToxPrint chemotype-enrichment workflow to identify substructural features significantly enriched in the NIS inhibition hit-call space. We assessed the applicability of enriched PhII chemotypes to prospectively predict NIS inhibition in the e1k dataset. Chemotype enrichments derived for the combined ~ 1800 dataset also identified additional enriched features, as well as chemotypes affiliated with cytotoxicity. These enriched chemotypes provide important new information that can support future data interpretation, structure-activity relationship, chemical use, and regulation.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Simportadores/antagonistas & inhibidores , Animales , Bioensayo , Transporte Biológico , Supervivencia Celular , Células HEK293 , Humanos , Yoduros , Relación Estructura-Actividad , Glándula Tiroides
13.
Chem Res Toxicol ; 34(2): 189-216, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33140634

RESUMEN

Since 2009, the Tox21 project has screened ∼8500 chemicals in more than 70 high-throughput assays, generating upward of 100 million data points, with all data publicly available through partner websites at the United States Environmental Protection Agency (EPA), National Center for Advancing Translational Sciences (NCATS), and National Toxicology Program (NTP). Underpinning this public effort is the largest compound library ever constructed specifically for improving understanding of the chemical basis of toxicity across research and regulatory domains. Each Tox21 federal partner brought specialized resources and capabilities to the partnership, including three approximately equal-sized compound libraries. All Tox21 data generated to date have resulted from a confluence of ideas, technologies, and expertise used to design, screen, and analyze the Tox21 10K library. The different programmatic objectives of the partners led to three distinct, overlapping compound libraries that, when combined, not only covered a diversity of chemical structures, use-categories, and properties but also incorporated many types of compound replicates. The history of development of the Tox21 "10K" chemical library and data workflows implemented to ensure quality chemical annotations and allow for various reproducibility assessments are described. Cheminformatics profiling demonstrates how the three partner libraries complement one another to expand the reach of each individual library, as reflected in coverage of regulatory lists, predicted toxicity end points, and physicochemical properties. ToxPrint chemotypes (CTs) and enrichment approaches further demonstrate how the combined partner libraries amplify structure-activity patterns that would otherwise not be detected. Finally, CT enrichments are used to probe global patterns of activity in combined ToxCast and Tox21 activity data sets relative to test-set size and chemical versus biological end point diversity, illustrating the power of CT approaches to discern patterns in chemical-activity data sets. These results support a central premise of the Tox21 program: A collaborative merging of programmatically distinct compound libraries would yield greater rewards than could be achieved separately.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/toxicidad , Pruebas de Toxicidad , Ensayos Analíticos de Alto Rendimiento , Humanos , Estados Unidos , United States Environmental Protection Agency
14.
Environ Health Perspect ; 128(2): 27002, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32074470

RESUMEN

BACKGROUND: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling. OBJECTIVES: In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). METHODS: The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast™ metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast™/Tox21 HTS in vitro assays. RESULTS: The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set. DISCUSSION: The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of ∼875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment. https://doi.org/10.1289/EHP5580.


Asunto(s)
Simulación por Computador , Disruptores Endocrinos , Andrógenos , Bases de Datos Factuales , Ensayos Analíticos de Alto Rendimiento , Humanos , Receptores Androgénicos , Estados Unidos , United States Environmental Protection Agency
15.
Toxicol Sci ; 173(1): 202-225, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31532525

RESUMEN

Use of high-throughput, in vitro bioactivity data in setting a point-of-departure (POD) has the potential to accelerate the pace of human health safety evaluation by informing screening-level assessments. The primary objective of this work was to compare PODs based on high-throughput predictions of bioactivity, exposure predictions, and traditional hazard information for 448 chemicals. PODs derived from new approach methodologies (NAMs) were obtained for this comparison using the 50th (PODNAM, 50) and the 95th (PODNAM, 95) percentile credible interval estimates for the steady-state plasma concentration used in in vitro to in vivo extrapolation of administered equivalent doses. Of the 448 substances, 89% had a PODNAM, 95 that was less than the traditional POD (PODtraditional) value. For the 48 substances for which PODtraditional < PODNAM, 95, the PODNAM and PODtraditional were typically within a factor of 10 of each other, and there was an enrichment of chemical structural features associated with organophosphate and carbamate insecticides. When PODtraditional < PODNAM, 95, it did not appear to result from an enrichment of PODtraditional based on a particular study type (eg, developmental, reproductive, and chronic studies). Bioactivity:exposure ratios, useful for identification of substances with potential priority, demonstrated that high-throughput exposure predictions were greater than the PODNAM, 95 for 11 substances. When compared with threshold of toxicological concern (TTC) values, the PODNAM, 95 was greater than the corresponding TTC value 90% of the time. This work demonstrates the feasibility, and continuing challenges, of using in vitro bioactivity as a protective estimate of POD in screening-level assessments via a case study.


Asunto(s)
Sustancias Peligrosas/toxicidad , Medición de Riesgo/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Nivel sin Efectos Adversos Observados
16.
Arch Toxicol ; 94(2): 469-484, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31822930

RESUMEN

The US Environmental Protection Agency's ToxCast program has generated toxicity data for thousands of chemicals but does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean firing rate (MFR) in rat primary cortical networks. Here, we expand this approach by retesting 384 of those compounds (including 222 active in the previous screen) in concentration-response across 43 network activity parameters to evaluate neural network function. Using hierarchical clustering and machine learning methods on the full suite of chemical-parameter response data, we identified 15 network activity parameters crucial in characterizing activity of 237 compounds that were response actives ("hits"). Recognized neurotoxic compounds in this network function assay were often more potent compared to other ToxCast assays. Of these chemical-parameter responses, we identified three k-means clusters of chemical-parameter activity (i.e., multivariate MEA response patterns). Next, we evaluated the MEA clusters for enrichment of chemical features using a subset of ToxPrint chemotypes, revealing chemical structural features that distinguished the MEA clusters. Finally, we assessed distribution of neurotoxicants with known pharmacology within the clusters and found that compounds segregated differentially. Collectively, these results demonstrate that multivariate MEA activity patterns can efficiently screen for diverse chemical activities relevant to neurotoxicity, and that response patterns may have predictive value related to chemical structural features.


Asunto(s)
Bases de Datos de Compuestos Químicos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Síndromes de Neurotoxicidad/patología , Pruebas de Toxicidad/métodos , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Aprendizaje Automático , Microelectrodos , Red Nerviosa/efectos de los fármacos , Redes Neurales de la Computación , Neuronas/efectos de los fármacos , Ratas Long-Evans
17.
Environ Int ; 126: 377-386, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30826616

RESUMEN

In support of the Endocrine Disruptor Screening Program (EDSP), the U.S.EPA's Office of Research and Development (ORD) is developing high-throughput screening (HTS) approaches to identify chemicals that alter target sites in the thyroid hormone (TH) pathway. The sodium iodide symporter (NIS) is a transmembrane glycoprotein that mediates iodide uptake into the thyroid as the initial step of TH biosynthesis. Previously, we screened 293 ToxCast chemicals (ph1v2) using a HEK293T cell line expressing human NIS in parallel radioactive iodide uptake (RAIU) and cell viability assays to identify potential environmental NIS inhibitors. Here, we expanded NIS inhibitor screening for a set of 768 ToxCast Phase II (ph2) chemicals, and applied a novel computational toxicology approach based on the ToxPrint chemotype to identify chemical substructures associated with NIS inhibition. Following single-concentration screening (at 1 × 10-4 M with a 20% inhibition cutoff), 235 samples (228 chemicals) were further tested in multiple-concentration (1 × 10-9 - 1 × 10-4 M) format in both RAIU and cell viability assays. The 167 chemicals that exhibited significant RAIU inhibition were then prioritized using combined RAIU and cell viability responses that were normalized relative to the known NIS inhibitor sodium perchlorate. Some of the highest ranked chemicals, such as PFOS, tributyltin chloride, and triclocarban, have been previously reported to be thyroid disruptors. In addition, several novel chemicals were identified as potent NIS inhibitors. The present results were combined with the previous ph1v2 screening results to produce two sets of binary hit-calls for 1028 unique chemicals, consisting of 273 positives exhibiting significant RAIU inhibition, and 63 positives following application of a cell viability filter. A ToxPrint chemotype-enrichment analysis identified >20 distinct chemical substructural features, represented in >60% of the active chemicals, as significantly enriched in each NIS inhibition hit-call space. A shared set of 9 chemotypes enriched in both hit-call sets indicates stable chemotype signals (insensitive to cytotoxicity filters) that can help guide structure-activity relationship (SAR) investigations and inform future research.


Asunto(s)
Disruptores Endocrinos/toxicidad , Ensayos Analíticos de Alto Rendimiento , Simportadores/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos
18.
Toxicol Sci ; 169(2): 317-332, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30835285

RESUMEN

The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.


Asunto(s)
Biología Computacional/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Toxicología/métodos , Toma de Decisiones , Humanos , Tecnología de la Información , Medición de Riesgo , Toxicocinética , Estados Unidos , United States Environmental Protection Agency
19.
Environ Health Perspect ; 127(1): 14501, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30632786

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are a group of fluorinated substances of interest to researchers, regulators, and the public due to their widespread presence in the environment. A few PFASs have comparatively extensive amounts of human epidemiological, exposure, and experimental animal toxicity data (e.g., perfluorooctanoic acid), whereas little toxicity and exposure information exists for much of the broader set of PFASs. Given that traditional approaches to generate toxicity information are resource intensive, new approach methods, including in vitro high-throughput toxicity (HTT) testing, are being employed to inform PFAS hazard characterization and further (in vivo) testing. The U.S. Environmental Protection Agency (EPA) and the National Toxicology Program (NTP) are collaborating to develop a risk-based approach for conducting PFAS toxicity testing to facilitate PFAS human health assessments. This article describes the construction of a PFAS screening library and the process by which a targeted subset of 75 PFASs were selected. Multiple factors were considered, including interest to the U.S. EPA, compounds within targeted categories, structural diversity, exposure considerations, procurability and testability, and availability of existing toxicity data. Generating targeted HTT data for PFASs represents a new frontier for informing priority setting. https://doi.org/10.1289/EHP4555.


Asunto(s)
Fluorocarburos/química , Fluorocarburos/toxicidad , Toxicocinética , Sustancias Peligrosas/química , Sustancias Peligrosas/toxicidad , Ensayos Analíticos de Alto Rendimiento , Estructura Molecular , Estados Unidos , United States Environmental Protection Agency
20.
Anal Bioanal Chem ; 411(4): 835-851, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30612177

RESUMEN

Non-targeted analysis (NTA) methods are increasingly used to discover contaminants of emerging concern (CECs), but the extent to which these methods can support exposure and health studies remains to be determined. EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) was launched in 2016 to address this need. As part of ENTACT, 1269 unique substances from EPA's ToxCast library were combined to make ten synthetic mixtures, with each mixture containing between 95 and 365 substances. As a participant in the trial, we first performed blinded NTA on each mixture using liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS). We then performed an unblinded evaluation to identify limitations of our NTA method. Overall, at least 60% of spiked substances could be observed using selected methods. Discounting spiked isomers, true positive rates from the blinded and unblinded analyses reached a maximum of 46% and 65%, respectively. An overall reproducibility rate of 75% was observed for substances spiked into more than one mixture and observed at least once. Considerable discordance in substance identification was observed when comparing a subset of our results derived from two separate reversed-phase chromatography methods. We conclude that a single NTA method, even when optimized, can likely characterize only a subset of ToxCast substances (and, by extension, other CECs). Rigorous quality control and self-evaluation practices should be required of labs generating NTA data to support exposure and health studies. Accurate and transparent communication of performance results will best enable meaningful interpretations and defensible use of NTA data. Graphical abstract ᅟ.


Asunto(s)
Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Mezclas Complejas , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Espectrometría de Masas/métodos , Contaminantes Ambientales/toxicidad , Trazadores Radiactivos , Estándares de Referencia , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...